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INTRODUCTION

The remarkable variety of communicative signals that
have captivated biologists since Darwin (1872) result
from the interaction of numerous selective forces.
Communicative complexity is known to have evolved
in response to intersexual selection (Andersson, 
1994), intrasexual selection (Ord, Blumstein & Evans,
2001), properties of the signal environment (Endler,
1992), perceptual biases (Ryan & Rand, 1993), pre-
dation risk (Stoddard, 1999), and social complexity
(Blumstein & Armitage, 1997).

Body size is also an important determinant of signal
design. For example, size may constrain the lowest 
frequency at which vocalizations can be produced

(Clutton-Brock & Albon, 1979; Ryan & Brenowitz,
1985; Gouzoules & Gouzoules, 1990; Hauser, 1993)
and influence the ability of receivers to locate the
source of acoustic signals (Bradbury & Vehrencamp,
1998). Similarly, body size may affect the size, type,
and transmission distance of static and dynamic
visual cues (Bradbury & Vehrencamp, 1998). The mor-
phology of a sender will determine the maximum size
of an ornament, and therefore the area over which 
it can be perceived. In turn, the resolving power of
receiver visual systems is also body-size dependent
with smaller animals typically possessing poorer
spatial resolution through size constraints on eye 
morphology (Kirschfeld, 1976).

Agamid and iguanid lizards have an extraordinary
diversity of visual signals. Social communication in
these animals is conducted primarily through discrete
and sequentially predictable motor patterns centred
on a core display of push-ups and head-nods. These
visual signals are important in territorial acquisi-
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tion/defence (Trivers, 1976; Carpenter, 1978) and 
mate selection (Jenssen, 1970a; Crews, 1975a,b).
Signal complexity, or the repertoire of components
used in displays, varies across species and can be
quantified by the number of ‘modifiers’ accompanying
a display (Jenssen, 1977). Modifiers may include:
dewlap extensions/throat engorging, tail movements,
arm waving, crest raising, body compression/inflation,
back arching, body raising/tilting and changes in body
colour.

We expect body size to influence modifier use 
during lizard visual displays for two reasons. First,
Jenssen (1978) predicted that large-bodied anoline
species, which typically roam over large territories
(Turner, Jennrich & Weintraub, 1969; Christian &
Waldschmidt, 1984), will subsequently conduct signal
exchanges over relatively long distances. He therefore
suggested that there would be little evolutionary
incentive to evolve anything other than a basic display
repertoire, and that this repertoire would most likely
be limited to conspicuous components for maximizing
signal detection by a distant receiver. Second, sexual
size dimorphism (hereafter SSD) in lizards is re-
lated to body size (Stamps, 1983; Andersson, 1994;
McCoy, Fox & Baird, 1994). While in most vertebrates,
SSD increases with body size (Andersson, 1994), 
this pattern does not appear to exist in iguanian
lizards and, may in fact, be reversed (Stamps, 1983;
Andersson, 1994; McCoy et al., 1994). We have found
previously that display repertoire size in lizards is 
positively associated with SSD and suggest that this
is explained by differences in male–male competi-
tive intensity, which is reflected by SSD, influencing
the evolution of signal complexity for improved oppo-
nent assessment (Ord et al., 2001). As smaller species
are typically more size dimorphic, this would therefore
predict the evolution of more elaborate signals in
smaller species, while larger-bodied species, which
presumably experience reduced levels of male–male
competition, would have limited selection for large
display repertoires.

We investigated whether variation in signal com-
plexity was associated with changes in body size in
two ways. First, we tested for a continuous relation-
ship or whether gradual decreases in body size were
correlated with gradual increases in modifier use. 
Second, we searched for evidence of a ‘threshold effect’
whereby once a particular size has been reached, the
evolution of an elaborate display becomes significantly
less likely.

MATERIAL AND METHODS

THE DATA

We first examined all available published accounts of
signal behaviour and body size for iguanian lizards

(156 sources, 133 species). From this larger dataset 
(T. J. Ord, unpubl. data), the subset of accounts pro-
viding complete information on both signal complex-
ity, as quantified by modifier repertoire size, and body 
size was identified (Tables 1 and 125 sources, 110
species).

One inherent problem in comparing communica-
tive systems across a diverse range of species is
obtaining an appropriate and reliable index of signal
variation that can be adequately standardized across
species. Visual displays in agamid and iguanid lizards
almost invariably include the stereotyped head and
body movements commonly termed ‘head-nod’ or
‘push-up’ displays. Subtle variation does exist within
these displays (e.g. differences in display rate, speed,
amplitude, etc.) and there are several species for
which this variation has been quantified. However, we
found that this information could not be incorporated
into our display complexity index because of method-
ological differences among published accounts. Also,
these core displays (head-nod and/or push-up) may
vary within a species. For example, some anoline
lizards are reported to have up to five different core
display types, each varying in structure and social
context (Hover & Jenssen, 1976; Jenssen & Rothblum,
1977). Thus, it was impractical to obtain a single 
value for each species based upon core display 
characteristics.

We focused instead on ‘display modifiers’, which are
postures or movements that accompany and elaborate
core displays (Jenssen, 1977). Modifier use varies
across species and accounts for a considerable pro-
portion of signal diversity. In addition, information 
on modifier repertoire size could be readily collated
from the literature, and standardized across species.
This allowed us to include a large, and taxonomically
diverse, range of species in our analyses. While the
presence of specific modifiers may be influenced by
social context in some species, many are employed 
consistently across all types of display interaction. We
therefore used the number of modifiers accompanying
core displays to quantify a form of signal complexity
(see also Ord et al., 2001).

Modifiers scored included: back arching, arm
waving, body compression/inflation, body raising, body
tilting, eye ‘orbing’, changes in body colouration, lip
smacking, crest raising, tail displays, throat dis-
plays (dewlap extensions, gorging of the throat, etc.),
and tongue protrusions. To be conservative, and to
acknowledge the presence/absence of core displays,
three species (Table 1) that were reported not to
possess a core display were scored as having a reper-
toire size of 0, irrespective of the presence of any 
modifiers (one species was observed to possess a throat
display, while others had a tail display). Some modi-
fiers are unique to species or species groups. However,
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Table 1. Sources consulted for species data

Species Repertoire size Body size (mm SVL) Dieta Referencesb

Agama agama 4 128 non-herbivore 1
Amblyrhynchus cristatus 5 318 herbivore 2–4
Amphibolurus muricatus 2 125 non-herbivore 5–8
Anolis acutus 2 66 non-herbivore 9,10
A. aeneus 5 60 non-herbivore 11–18
A. auratus 3 51 non-herbivore 10,19–21
A. bonairensis 6 75 n.d. 18,22
A. brevirostris 1 51 n.d. 23
A. carolinensis 8 64 non-herbivore 10,24–37
A. carpenteri 5 41 n.d. 10,38
A. caudalis 3 51 n.d. 23
A. cooki 6 65 non-herbivore 39
A. cristatellus 6 70 non-herbivore 9,10,39
A. cupreus 5 55 non-herbivore 10,38
A. cybotes 4 81 non-herbivore 40–44
A. distichus 2 50 non-herbivore 10,44
A. equestris 4 166 non-herbivore 29,45
A. evermanni 6 70 non-herbivore 39
A. extremus 5 83 n.d. 18,22
A. grahami 4 63 non-herbivore 34
A. griseus 5 127 n.d. 18,22
A. gundlachi 6 70 non-herbivore 10,39,46
A. humilis 5 38 non-herbivore 10,38
A. intermedius 5 54 n.d. 10,38
A. limifrons 5 40 non-herbivore 10,38,47,48
A. lineatopus 5 70 non-herbivore 10,49
A. luciae 5 85 non-herbivore 18,46
A. marcanoi 5 65 non-herbivore 40–42
A. monensis 6 60 non-herbivore 39
A. nebulosus 5 42 non-herbivore 10,50–53
A. opalinus 8 48 non-herbivore 10,54,55
A. pentaprion 5 75 n.d. 38
A. richardii 5 125 n.d. 18,22
A. roquet 6 80 non-herbivore 18,46
A. sagrei 6 55 non-herbivore 10,25,30,34,37,43
A. sericeus 5 50 n.d. 10,38
A. townsendi 5 45 n.d. 38,56,57
A. trinitatis 6 72 non-herbivore 17,18,46
A. tropidolepis 5 59 n.d. 10,38
A. valenciennic 0 85 non-herbivore 58
Brachylophus fasciatus 3 250 herbivore 4,46,59,60
Callisaurus draconoides 5 93 non-herbivore 46,61
Chalarodon madagascariensis 5 87 non-herbivore 62
Chamaelinorops barbouri 2 41 non-herbivore 63
Conolophus subcristatus 6 400 herbivore 4,64
Cophosaurus texanus 5 70 non-herbivore 61
Crotaphytus collaris 4 110 non-herbivore 46,60,65–67
Ctenophorus decresii 5 90 non-herbivore 68
C. fionni 5 96 non-herbivore 6,68
C. fordi 1 53 non-herbivore 6,69–72
C. maculosus 4 69 non-herbivore 6,73
C. nuchalis 5 90 non-herbivore 5,8
C. pictus 2 66 non-herbivore 74
C. vadnappa 5 90 non-herbivore 68
Ctenosaura clarki 2 150 n.d. 4,65,75
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Table 1. Continued

Species Repertoire size Body size (mm SVL) Dieta Referencesb

C. quiquecarinata 0 200 non-herbivore 4,46
C. similis 1 302 herbivore 4,76
Cyclura carinata 5 267 herbivore 4,77,78
C. collei 0 428 n.d. 77,79
C. cornuta 2 355 herbivore 4,77,80
C. cychlura 3 411 n.d. 4,77,79
C. nubila 1 745 herbivore 4,60,77,79,81
C. ricordi 0 355 herbivore 77,80
C. rileyi 0 306 n.d. 4,77,79
Dipsosaurus dorsalis 3 144 herbivore 4,82–84
Gambelia sila 4 97 non-herbivore 85,86
G. wislizenii 3 102 non-herbivore 85–87 17887
Holbrookia lacerata 5 60 non-herbivore 61
H. maculata 5 60 non-herbivore 61
H. propinqua 5 54 non-herbivore 61,88–91
Iguana iguana 7 360 herbivore 4,92–95
Lophognathus temporalis 1 130 non-herbivore 6,8,96
Microlophus albemarlensis 4 104 non-herbivore 60,97
M. bivittatus 4 63 non-herbivore 60,97
M. delanonis 4 129 non-herbivore 60,97
M. duncanensis 4 85 non-herbivore 60,97
M. grayii 4 69 non-herbivore 60,97
M. habelii 4 84 non-herbivore 60,97
M. pacificus 4 84 non-herbivore 60,97
Petrosaurus mearnsi 2 99 non-herbivore 98–100
Phrynocephalus arabicusc 0 58 n.d. 101
P. maculatusc 0 62 non-herbivore 102,103
Phrynosoma cornutum 0 120 non-herbivore 46,104
P. coronatum 0 107 non-herbivore 46,104
P. douglassii 0 67 non-herbivore 46,104
P. modestum 0 71 non-herbivore 46,104
P. platyrhinos 0 87 non-herbivore 46,104
P. solare 0 113 non-herbivore 46,104
Pogona barbata 6 250 non-herbivore 5,6,29,105,106
Sauromalus obesus 4 164 herbivore 4,107
Sceloporus dugesii 2 88 n.d. 108,109
S. graciosus 4 57 non-herbivore 110–113
S. jarrovii 4 97 non-herbivore 46,108,109,114
S. magister 2 140 non-herbivore 46,109,115
S. merriami 4 58 non-herbivore 109,116,117
S. mucronatus 2 101 n.d. 108,109
S. occidentalis 2 70 non-herbivore 100,118–120
S. ornatus 2 73 n.d. 108,109
S. poinsetti 2 120 non-herbivore 46,108,109
S. torquatus 2 141 n.d. 108
S. un.d.ulatus 3 83 non-herbivore 43,112,113,121–123
Uma exsul 7 100 non-herbivore 124,125
U. inornata 6 113 non-herbivore 100,126
U. notata 6 113 non-herbivore 100,126
U. paraphygas 7 86 n.d. 124,125
U. scoparia 6 113 non-herbivore 100,126
Urosaurus graciosus 2 60 non-herbivore 46,98,99
U. microscutatus 0 40 non-herbivore 46,99
U. ornatus 2 53 non-herbivore 99,117,127–133
Uta stansburiana 4 54 non-herbivore 46,98,99,134–136



BODY SIZE AND DISPLAY EVOLUTION 149

© 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76, 145–161

Table 1. Continued

an.d., no data.
b1, Harris (1964); 2, Carpenter (1966b); 3, Schmidt (1935); 4, Carpenter (1982); 5, Carpenter, Badham & Kimble (1970);
6, Greer (1989); 7, Groom (1973); 8, Wilson & Knowles (1988); 9, Philibosian (1975); 10, Andrews (1979); 11, Stamps 
& Barlow (1973); 12, Stamps (1978); 13, Stamps & Crews (1976); 14, Stamps (1976); 15, Stamps (1973); 16, Stamps &
Krishnan (1994); 17, Gorman (1969); 18, Gorman (1968); 19, Fleishman (1988a); 20, Fleishman (1992); 21, Fleishman
(1988b); 22, Roughgarden (1995); 23, Jenssen & Gladson (1984); 24, Cooper (1977); 25, Tokarz & Beck (1987); 26, Jenssen,
Greenberg & Hovde (1995); 27, Evans (1935); 28, McMann (1993); 29, Bels (1992); 30, Evans (1938a); 31, Greenberg &
Noble (1944); 32, Crews (1975b); 33, Greenberg (1977); 34, Macedonia & Stamps (1994); 35, Ruby (1984); 36, Decourcy &
Jenssen (1994); 37, Evans (1938b); 38, Echelle et al. (1971); 39, Ortiz & Jenssen (1982); 40, Losos (1985a); 41, Losos (1985b);
42, Macedonia, Evans & Losos (1994); 43, Noble & Teale (1930); 44, Jenssen (1983); 45, Font & Kramer (1989); 46, Rogner
(1997); 47, Jenssen & Hover (1976); 48, Hover & Jenssen (1976); 49, Rand (1967); 50, Jenssen (1970a); 51, Jenssen (1971);
52, Jenssen (1970b); 53, Lister & Aguayo (1992); 54, Jenssen (1979a); 55, Jenssen (1979b); 56, Jenssen & Rothblum (1977);
57, Carpenter (1965); 58, Hicks & Trivers (1983); 59, Greenberg & Jenssen (1982); 60, Ackerman (1998); 61, Clarke (1965);
62, Blanc & Carpenter (1969); 63, Jenssen & Feely (1991); 64, Carpenter (1969); 65, Yedlin & Ferguson (1973); 66, Fitch
(1956); 67, Greenberg (1945); 68, Gibbons (1979); 69, Webber (1981); 70, Cogger (1978); 71, Tsellarius & Tsellarius (1997);
72, Cogger (1996); 73, Mitchell (1973); 74, Mayhew (1963); 75, Carpenter (1977); 76, Henderson (1973); 77, Martins & J.
Lamont 1998; 78, Iverson (1979); 79, Schwartz & Carey (1977); 80, Carey (1975); 81, Buide (1951); 82, Carpenter (1961a);
83, Norris (1953); 84, Parker (1972); 85, Montanucci (1965); 86, Tollestrup (1983); 87, Montanucci (1967); 88, Mason &
Adkins (1976); 89, Cooper (1985); 90, Cooper & Guillette (1991); 91, Cooper (1988); 92, Dugan (1982); 93, Distel & J. Veazey
(1982); 94, Lazell (1973); 95, Swanson (1950); 96, Blamires (1998); 97, Carpenter (1966a); 98, Carpenter (1962); 99, Purdue
& Carpenter (1972b); 100, Stebbins (1966); 101, Ross (1995); 102, Ross (1989); 103, Nikol’skii (1963); 104, Lynn (1965);
105, Brattstrom (1971); 106, Lee & Badham (1963); 107, Nagy (1973); 108, Hunsaker (1962); 109, Martins (1993a); 110,
Martins (1991); 111, Martins (1993b); 112, Ferguson (1971); 113, Ferguson (1973); 114, Ruby (1977); 115, Vitt et al. (1974);
116, Carpenter (1961b); 117, Milstead (1970); 118, Tarr (1982); 119, Fitch (1940); 120, Purdue & Carpenter (1972a); 121,
Cooper & N. Burns (1987); 122, Rothblum &Jenssen (1978); 123, Roggenbuck & Jenssen (1986); 124, Carpenter (1967);
125, de Queiroz (1989); 126, Carpenter (1963); 127, Carpenter & Grubitz (1961); 128, Mahrt (1998); 129, Thompson &
Moore (1992); 130, Carpenter & Grubitz (1960); 131, Zucker (1987); 132, Deslippe et al. (1990); 133, M’Closkey, Deslippe
& Szpak (1990); 134, Ferguson (1970a); 135, Ferguson (1966); 136, Ferguson (1970b).
cSpecies not possessing core displays.

our aim was to quantify repertoire size to obtain an
index of signal complexity across species. Thus, we did
not compare individual modifiers to assess more subtle
differences or similarities in structure with those of
other species.

We acknowledge the possibility that, in some cases,
the original sources from which we obtained repertoire
size information may have underestimated the num-
ber of modifiers used. This may have happened if only
part of the display repertoire was observed and/or if
the focus of the investigator(s) was on other aspects of
behaviour. This potential inaccuracy might increase
the apparent variation in repertoire size, but there is
no reason to expect such errors to be systematically
associated with the other factors of interest. The effect
will hence be to reduce the likelihood of detecting a
significant relationship (see Benton, 1999; Nunn &
Barton, 2001).

Snout-vent length (SVL) was used as a measure of
body size. Where possible, as our predictions regard-
ing signal use and body size are based primarily on
male–male display interactions, maximum male SVL
was favoured. However, in species that were reported
to have no significant difference between the sexes, or

when male data were unavailable, the maximum
species SVL was used.

COMPARATIVE ANALYSES

We used three methods to test whether modifier re-
pertoire size is associated with body size: regression
analysis using unmanipulated or ‘raw’ species data;
standardized phylogenetic independent contrast
analysis (Purvis & Rambaut, 1995); and the concen-
trated-changes test using ancestor-trait reconstruc-
tions (Maddison, 1990). Raw and contrast regression
analyses were used to test for a linear relation-
ship, while analysis of variance on contrast data 
and concentrated-changes analyses were used to test
for a threshold effect between modifier use and body
size.

PHYLOGENY

Independent contrasts and ancestor trait recon-
structions require phylogenetic information. No 
single phylogenetic hypothesis is available for all
species of interest, and different species groups 



have been analysed to varying degrees of detail. In
some cases, there were several conflicting phyloge-
netic hypotheses available. We ‘ranked’ each hypo-
thesis and favoured those based on combined data
over purely molecular or morphological data. If
hypotheses were still equally ranked, we preferred
trees constructed using parsimony, then those with
the fewest number of polytomies, and finally those
more recent in publication. Species synonyms were
checked using the ‘EMBL Reptile Database’ (http://
www.embl-heidelberg.de/~uetz/livingreptiles.html).

Using these criteria, we compiled information from
18 sources to construct a composite tree (Fig. 1).
Agamidae: genera positions follow Macey et al. (2000)
with species within the genus Ctenophorus based on
A. E. Greer (unpubl. data). Iguanidae: subfamilies 
are based on Schulte et al.¢s (1998) most resolved
hypothesis. Anoles and Chamaelinorops were inferred
from Jackman et al. (1999) with additional species
being positioned from other sources: Anolis auratus,
A. cupreus, A. nebulosus (Stamps, Losos & Andrews,
1997); A. caudalis, A. cybotes, A. opalinus (Burnell &
Hedges, 1990); A. cooki, A. evermanni, A. gundlachi,
A. monensis (Roughgarden & Pacala, 1989); A.
bonairensis, A. extremus, A. griseus, A. richardii, A.
roquet, A. trinitatis (Yang, Soule & Gorman, 1974;
Roughgarden & Pacala, 1989); A. carpenteri, A. inter-
medius, A. sericeus, A. townsendi, A. tropidolepis
(Echelle, Echelle & Fitch, 1971); A. pentaprion
(Echelle et al., 1971; Guyer & Savage, 1992). 
Crotaphytinae and genera level positions for 
Phrynosomatinae are taken from Schulte et al. (1998)
and Reeder & Wiens (1996). Species positions were
from several sources: Phrynosoma (Garland, 1994);
Sceloporus (Wiens & Reeder, 1997) with S. mucrona-
tus by Mindellm, Sites & Graur (1989); Uma (Adest,
1977); Urosaurus (Reeder & Wiens, 1996). Iguaninae
are based on Sites et al. (1996) and on Wiens &
Hollingsworth (2000) combined morphological and
molecular hypothesis, with Ctenosaura and Cyclura
positioned by de Queiroz (1987) and Martins &
Lamont (1998), respectively. No hypotheses for 
Holbrookia or Microlophus were found.

INDEPENDENT CONTRAST ANALYSIS ON

CONTINUOUS DATA

We calculated standardized independent con-
trasts (Felsenstein, 1985) for repertoire size and
log10(SVL) using the program CAIC v.2.6.2 (http://
www.bio.ic.ac.uk/evolve/software/caic/index.html; see
also Purvis & Rambaut, 1995), which were then 
used in regression analyses. Independent contrasts
are a common way to control for phylogenetic non-
independence of species comparative data in stati-
stical tests (Harvey & Pagel, 1991). While the CAIC

program can calculate contrasts from trees possessing
polytomies (where the precise phylogenetic relation-
ship between species is unknown), to be consistent
with the phylogenetic hypothesis used in the concen-
trated-changes test (see below), we also conducted
additional analyses by randomly resolving poly-
tomies using MacClade software v.3.08a (Maddison &
Maddison, 1992, 1999). As branch length data were
only available for some species pairs, branch lengths
were set equal to include the maximum number of
species in our analysis. We selected the ‘Crunch’ algo-
rithm for contrast analysis, and regressed subsequent
data through the origin as required by the method
(Purvis & Rambaut, 1995).

INDEPENDENT CONTRAST ANALYSIS ON BODY

SIZE CATEGORIES

In addition to calculating contrasts from continuous
data, we split body-size data into quartiles to form 
four broad body-size ranges (0–60, 61–84, 85–120,
121–745mm SVL). Splitting at the quartiles ensured
that size categories were not biased by a precon-
ceived notion of how body size was likely to influence
the evolution of repertoire size. Following Dunn, 
Whittingham & Pitcher (2001), we scored each using
categorical dummy variables (see also Winquist &
Lemon, 1994; Martin, 1995) and analysed these using
the ‘Crunch’ algorithm in CAIC. Contrasts for each
dummy variable were then multiplied with corre-
sponding contrasts for repertoire size. This allowed us
to calculate a mean repertoire size for each body size
quartile while controlling for possible phylogenetic
non-independence. Analysis of variance and F-test
comparisons were then used to test for differences
across size categories.

CONCENTRATED-CHANGES TESTS AND ANCESTOR

TRAIT RECONSTRUCTIONS

In order to identify a possible threshold, we used 
Maddison’s (1990) concentrated-changes test to deter-
mine whether the evolution of a specified body size
range precedes or occurs simultaneously with that of
signal complexity. This method requires dichotomous
data. We created frequency distributions of both traits.
The median value was used to split repertoire size into
two discrete variables. Species with more than the
median number of display modifiers (4; range: 0–8)
were scored as having large repertoires, while those
with as many or fewer than this value were scored as
having small repertoires. In contrast, body-size data
were divided sequentially at the 30th, 40th, 50th, 60th
and 70th percentiles (65, 70, 84, 90, 108mm SVL,
respectively). Those species smaller than or equal to a
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Figure 1. The phylogenetic hypothesis used to calculate independent contrasts and reconstruct ancestor states for 
concentrated-changes analyses. Polytomies are left unresolved. See text for sources.



percentile boundary were grouped together. This
allowed us to create several alternative size ranges to
provide a more detailed test of our ‘threshold’ hypoth-
esis than splitting data at the quartiles, as in contrast
analyses.

In order to reconstruct ancestor states for use in 
the concentrated-changes test we employed the same
phylogenetic hypothesis used in contrast analyses.
However, the test can only be applied to a fully bifur-
cating tree. Thus, we randomly resolved polytomies
and used the phylogenetic program MacClade v.3.08a
(Maddison & Maddison, 1992, 1999) to reconstruct
ancestor states assuming parsimony. Equivocal reso-
lutions, where two equally parsimonious trait recon-
structions are possible, were resolved using both the
available algorithms provided by the program:
ACCTRAN (which accelerates changes toward the
root) and DELTRAN (which delays changes away from
the root).

The concentrated-changes test has low statistical
power and is therefore likely to be conservative (Lorch
& Eadie, 1999). Following Ortolani & Caro (1996) and
suggestions by Lorch & Eadie (1999), we considered
associations with P < 0.05 as highly significant, while
P-values falling between 0.05 and 0.10 were consid-
ered as marginally significant (Ord et al., 2001; T.J.
Ord, D.T. Blumstein & C.S. Evans, unpubl. data). The
large number of species investigated prevented us
from calculating an exact probability; we therefore
report P-values calculated using a simulation algo-
rithm (Maddison & Maddison, 1992) with 10 000 re-
plicates. This method has been shown to provide
consistent results with that of exact P-value calcula-
tions (Maddison, 1990).

RESULTS

LINEAR RELATIONSHIP TESTS

There was a significant negative correlation between
modifier repertoire size and SVL in a regression of raw
species data (d.f. = 109, R = 0.19, one-tailed P = 0.022;
Fig. 2). However, there was no relationship in a series
of contrast analyses where we regressed body size 
on repertoire size (polytomies unresolved: d.f. = 88,
R = 0.08, one-tailed P = 0.235; fully bifurcating tree:
d.f. = 109, R = 0.10, one-tailed P = 0.162).

INDEPENDENT CONTRAST ANALYSIS ON BODY

SIZE CATEGORIES

There was no significant difference in contrasts for
mean repertoire size across body size categories split
at the quartiles (ANOVA, polytomies unresolved:
F3,348 = 0.57, P = 0.633; fully bifurcating tree:
F3,432 = 0.58, P = 0.626). However, variance in reper-

toire size at smaller body sizes did increase signifi-
cantly (Table 2; Fig. 3). This suggests that body size
constrains (or is coupled with factors that limit) 
the evolution of elaborate repertoires in large bodied
lizards, while it apparently has little influence on the
evolution of display behaviour in smaller bodied
lizards.

CONCENTRATED-CHANGES TESTS AND ANCESTOR

TRAIT RECONSTRUCTIONS

All but two ancestor trait reconstructions had evolu-
tionary gains for large repertoire size in regions of the
phylogenetic tree possessing each body size range
(Table 3a). For these body-size ranges, we used the
concentrated-changes analysis to test for significant
historical associations between repertoire size and
body size. We found that gains in large repertoire size
occurred more often than expected by chance on
branches of the phylogenetic tree possessing a body-
size range of 0–70 and 0–84mm SVL (Table 3a; Fig. 4).
Only one or two of the total 10 or 11 potential gains in
large repertoire size were associated with each body-
size range (Table 3a) suggesting a large effect size.
Nonetheless, our results provide evidence that species
above a particular size threshold – likely to be some-
where between 70 and 84mm SVL – are significantly
less likely to evolve large repertoires. This suggests
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Figure 2. The relationship between repertoire size and
body size for 110 iguanian lizards. Data were obtained from
a variety of sources (Table 1).



that other, unrelated, evolutionary forces are acting on
signal design below the influence of body size.

In order to minimize the possible influence of a her-
bivorous diet on this size threshold (see discussion), we
conducted an additional series of tests that included

only species that were known to be insectivores/
carnivores (Table 1). In doing so, we would expect 
the presence of a size threshold to be weaker or lack-
ing, assuming large-bodied herbivores, that do not 
typically defend resources, are accounting for small
repertoire sizes in large-bodied species. Results were
ambiguous and dependent on ancestor reconstruction
(Table 3b). Specifically, a size threshold between 70 
and 84mm SVL was still detected using DELTRAN,
but not ACCTRAN reconstructions. As a result, there
is some support that excluding herbivores reduced or
eliminated the presence of a size threshold on reper-
toire size.

DISCUSSION

We found little evidence to support the prediction that
the evolution of signal complexity, as measured by
modifier repertoire size, followed a consistent and 
continuous pattern of increase with corresponding
decreases in body size in iguanian lizards. Instead,
body size appears to convey a threshold effect on
signal complexity by reducing the likelihood of large
display repertoires evolving in large-bodied species.
However, below this boundary, the selective pressure
associated with body size becomes relaxed and species
have a greater potential to evolve more elaborate 
displays.

We expected that body size would be negatively
associated with repertoire size for two reasons. First,
home range size tends to increase with body size in
lizards (Turner et al., 1969; Christian & Waldschmidt,
1984) and thus signal exchanges are likely to be 
conducted over increasingly greater distances in
larger-bodied species. Signal transmission over large
distances suffer from degradation constraints (Endler,
1992) that may limit displays to those components
most readily perceivable. Jenssen (1978) hypothesized
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Table 2. F-test comparisons of variance in repertoire size contrasts between body
size quartiles 

Polytomies Fully bifurcating 

Body-size 
unresolved tree

range (mm SVL) F87 Pa F108 Pa

0–60 vs. 61–84 1.53 NS 1.28 NS
0–60 vs. 85–120 1.34 NS 1.68 0.007
0–60 vs. 121–745 3.43 <0.0001 5.41 <0.0001
61–84 vs. 85–120 0.88 NS 1.31 NS
61–84 vs. 121–745 2.26 0.0002 4.22 <0.0001
85–120 vs. 121–745 2.57 <0.0001 3.22 <0.0001

aNS, not significant (P > 0.10).

Figure 3. Means ± SE for phylogenetically indepen-
dent contrasts of repertoire size across four body size quar-
tiles in iguanian lizards calculated from a fully bifurcating
tree. The expected size threshold constraining the evolu-
tion of elaborate repertoires in large-body lizards occurs
between 70 and 84mm SVL (see Table 3a). Positive values
on the y-axis illustrate increases in repertoire size within
a size category while negative values indicate decreases in
repertoire size. The average represents the magnitude of
these trends. Thus, a large positive value demonstrates a
strong trend for increased repertoire size with size.



that large-bodied lizards with relatively large territo-
ries should therefore be expected to evolve only basic
display repertoires; a prediction that was also sup-
ported by our previous finding that modifier use is neg-
atively correlated with home range size (T.J. Ord, D.T.
Blumstein & C.S. Evans, unpubl. data). Second, there
is a tendency for male-biased SSD to be negatively cor-
related with overall body size in some lizards (Stamps,
1983; McCoy et al., 1994). In a previous study, we
found modifier repertoire size increases with SSD (Ord
et al., 2001). As a consequence, modifier use is also
expected to be negatively correlated with body size.

However, our results reveal a more complex in-
teraction occurring between body size and signal 
complexity than would be expected initially through

associations with SSD and home range size. A more
precise interpretation of the relationship is that body
size influences repertoire complexity above a certain
‘threshold’. Specifically, at larger body sizes, an elabo-
rate repertoire is less likely to evolve. In contrast,
below this threshold, the apparent affect of body size
becomes relaxed and other, possibly unrelated, selec-
tive forces may then influence the evolution of signal
complexity (e.g. Ord et al., 2001; unpubl. data). This
interpretation is consistent with the finding that
repertoire size varies significantly more in small-
bodied species indicating that body-size effects are
probably not as important in signal design in these
animals as they are in larger lizards.

A potential, though unlikely, hypothesis accounting
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Table 3. The correlated evolution of repertoire size and body size in iguanian
lizards when no distinction on diet is made (a) and for non-herbivorous species 
only (b)

No. of gains 
Body-size range Reconstruction & lossesa Pb

(a) ALL SPECIES
£30th percentile (0–65mm SVL) ACCTRAN G10L7/G0 n/a

DELTRAN G11L6/G0 n/a

£40th percentile (0–70mm SVL) ACCTRAN G10L7/G2 0.089
DELTRAN G11L6/G1 0.028

£50th percentile (0–84mm SVL) ACCTRAN G10L7/G2 0.039
DELTRAN G11L6/G1 0.010

£60th percentile (0–90mm SVL) ACCTRAN G10L7/G6 NS
DELTRAN G11L6/G7 NS

£70th percentile (0–108mm SVL) ACCTRAN G10L7/G6 NS
DELTRAN G11L6/G7 NS

(b) NON-HERBIVORES
£30th percentile (0–65mm SVL) ACCTRAN G7L7/G0 n/a

DELTRAN G8L6/G0 n/a

£40th percentile (0–70mm SVL) ACCTRAN G7L7/G2 NS
DELTRAN G8L6/G1 0.087

£50th percentile (0–84mm SVL) ACCTRAN G7L7/G2 NS
DELTRAN G8L6/G1 0.050

£60th percentile (0–90mm SVL) ACCTRAN G7L7/G6 NS
DELTRAN G8L6/G7 NS

£70th percentile (0–108mm SVL) ACCTRAN G7L7/G6 NS
DELTRAN G8L6/G7 NS

aTotal number of gains (G) and losses (L) in large repertoire size against number
of gains (G) in large repertoire size on branches also possessing the specified 
body-size range.
bNS, not significant (P > 0.10); n/a, not applicable as no gains were reconstructed
in regions of the tree possessing the specified body-size range.
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Figure 4. The evolution of large display repertoires and body size £84mm SVL (snout–vent length; 50th percentile cut-
off) reconstructed assuming parsimony. Species are represented by numerals (see Fig. 1). Data were obtained from a variety
of sources (Table 1). � = trait present, � = trait absent, �| = equivocal reconstruction. Large repertoire size was assumed
to be absent following outgroup analysis at the ancestral node (see Ord et al., 2001).



for this unusual body-size effect on signal evolution 
is that it reflects the mass-specific metabolic cost asso-
ciated with activity, which tends to increase with body
size in lizards (Bennett, 1982). We might therefore
expect energetic costs to constrain the evolution of elab-
orate displays in large lizards (Purdue & Carpenter,
1972a; Carpenter, 1982). Whether this would manifest
itself through a threshold effect is not clear, as the rela-
tionship between cost and activity tends to be relatively
linear (Bennett, 1982). In addition, this explanation
would be sufficient only in accounting for reductions in
dynamic display components. However, not all display
modifiers making up lizard signal repertoires are
dynamic. Thus, larger species could still evolve complex
repertoires based on static modifiers alone, which are
presumably less energetically costly, if there was a
selective advantage to do so.

An alternative, and more likely, explanation is that
signal variation reflects differing resource-utilization
strategies and the social dynamics they promote.
Body-size-dependent energetic requirements influence
the type of food resources animals may effectively
exploit. Smaller lizards can be supported on an insec-
tivorous diet, but larger species, with their higher
metabolic costs, have typically switched to a diet of
plant material requiring less energy to harvest (Sokol,
1967; Pough, 1973). For many herbivorous lizards, the
availability of food resources can fluctuate dramati-
cally in space and time (see Stamps, 1983, and re-
ferences therein). The difficulty in defending these
food resources economically is believed to have limited
the evolution of territoriality and promoted instead
non-aggressive aggregations for exploiting clumped
resources (Stamps, 1977, 1983). This lack of aggres-
siveness in large-bodied herbivorous lizards may have
eliminated the selective advantage for having com-
plex signals to mediate territorial disputes. Indeed, we
have demonstrated previously that non-herbivores are
significantly more likely to evolve large display reper-
toires than herbivores (T.J. Ord, D.T. Blumstein & C.S.
Evans, unpubl. data).

This hypothesis would suggest the existence of a cor-
responding body-size threshold acting on the evolution
of a herbivorous diet in iguanian lizards. Two reviews
of lizard diets provide some support for this prediction.
Pough (1973) found that larger iguanian lizards were
herbivorous above a similar threshold [110mm SVL;
approximated from body weight data using Pough’s
(1973) fig. 1]. Similarly, Schluter (1984) found that 
the proportion of plant material that iguanid lizards
incorporate into their diet increases dramatically from
10% to 80% over a body-size range of just 90–110mm
SVL (his fig. 3). Both thresholds are remarkably
similar to what also appears to be affecting the evolu-
tion of modifier use. While we have previously tested
dietary influences on modifier repertoire size in an

earlier study (Ord et al. unpubl. data), if a herbivorous
diet is influencing the evolution of a size threshold,
then excluding herbivorous species from the analyses
would, in theory, eliminate the presence of a thresh-
old effect on repertoire size. On conducting such analy-
ses, there is partial support for this prediction
(Table 3b). However, we suggest that a direct test of
repertoire size and resource defensibility will be nec-
essary to determine whether body size limits the evo-
lution of elaborate signals as a secondary consequence
of social characteristics typically associated with being
large and herbivorous.

While a body-size threshold on the evolution of
signal complexity may be unique to the idiosyncrasies
of iguanian energetic requirements, the possibility
remains that similar body-size influences may exist 
in other reptilian and non-reptilian communicative
systems. We have identified that body size may influ-
ence the presence of visual displays in iguanian
lizards by reducing the likelihood of signals evolving
at relatively large body sizes. The most interesting
and revealing finding of this study is the nature by
which this interaction between size and signal design
appears to occur. It demonstrates the importance of
identifying both the selective forces involved, and the
nature through which these forces work, in order to
fully understand the evolutionary processes that have
led to the extraordinary diversity of animal signals.
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